Genetic Divergence in Selected Durum Wheat Genotypes of Ethiopian Plasm

نویسندگان

  • AREGA GASHAW
  • HUSSEIN MOHAMMED
  • HARJIT SINGH
چکیده

Wheat of both the tetraploid (Triticum durum Desf.) and hexaploid (Triticum aestivum L.), is the most important cereal crop in Ethiopia, ranking third in total production (17%) next to maize (Zea mays L.) and tef (CSA, 2002). Wheat covers a total arable land of 110,434 ha with average productivity of about 8.4 qt ha-1, which is below the national average (14.4 qt ha-1). A field experiment was conducted at the Sirinka Agricultural Research Centre, northeastern Ethiopia, to estimate the genetic divergence among indigenous durum wheat (Triticum durum Desf.) genotypes of diverse origin, and clustering them into homogenous groups for the hybridisation programme. Genetic divergence analysis was done based on multivariate analysis using Mahalanobis’s D2 statistic, which grouped the durum wheat genotypes into ten clusters. The highest inter-cluster distance was between clusterll and cluster-lll (D2 = 57.15). There was no correspondence between geographic and genetic distances, i.e., germplasms, collected from the same geographic area were placed into different cluster groups and those collected from different geographic regions were placed into the same cluster. The presence of significant genetic variability among the evaluated durum wheat genotypes suggests an opportunity for improvement of grain yield through hybridisation of genotypes from different clusters and subsequent selection from the segregating generations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces

Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The identification, development, and employment of resistant wheat genetic material is the key to overcoming costs and limitations of fungicide treatments. The search for resistance sources in untapped genetic material may speed up the deployment of STB genetic resistance in the ...

متن کامل

Genetic Diversity of Genotypes of Durum Wheat (Triticum Turgidum L.) Genotypes Based on Cluster and Principal Component Analyses

Genetic  diversity  is  the  basis  of  the  natural  evolution  of  plant  breeding  and  biological  system  are  important  components  of  sustainability. The aim of this study was to evaluate 116 genotypes of Triticum turgidum from seven countries in terms of morphological traits. The results showed that high significant differences among the genotypes. The correlation between gra...

متن کامل

Genetic Diversity of Genotypes of Durum Wheat (Triticum Turgidum L.) Genotypes Based on Cluster and Principal Component Analyses

Genetic  diversity  is  the  basis  of  the  natural  evolution  of  plant  breeding  and  biological  system  are  important  components  of  sustainability. The aim of this study was to evaluate 116 genotypes of Triticum turgidum from seven countries in terms of morphological traits. The results showed that high significant differences among the genotypes. The correlation between gra...

متن کامل

Selecting High Zinc-efficient and Assessment of Zinc Stress Tolerance of the Wheat Durum Genotypes

At percent, Zn stress tolerance using novel genetic resources is an important mitigation strategy for plant breeding. In this study, thirty-five durum wheat genotypes with different growth habits were evaluated under normal (non-stress) and Zn deficient stress during the 2014-15 cropping season. A total of ten Zn stress tolerance indices including stress tolerance index (STI), relative zinc-def...

متن کامل

High‐density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding

Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008